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formed by rapid (ICT11 s) S1 —• S0 internal conversion.13 These 
energized S0* molecules, which interconvert freely between trans 
and cis forms, dissociate fully in less than 2 ns through a process 
believed to involve a short-lived but real diazenyl intermedi-
ate_2d.io.i4.is JJ 1 J 8 v j e w m a v b e confirmed by a quantitative 
theoretical interpretation of the product state distribution or by 
further experimental studies of the methyl energetics and of related 
azoalkanes. 
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We are reporting that while phenylacetylene, a few of whose 
molecules are doubly labeled by 13Cs on the triple bond, is po­
lymerized by some catalysts including titanium tetrabutoxide plus 
triethylaluminum to give poly(phenylacetylene) in which the labels 
are separated by a double bond (eq 1), when the initiator is 
molybdenum pentachloride plus tetraphenyltin, the labels are 
separated by a single bond (eq 2). This tallies with the idea that 
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derivatives of molybdenum are effective initiators of both olefin 
metatheses1'2 and acetylene polymerizations,3,4 not by coincidence, 
but because the acetylene polymerizations they induce are olefin 
metatheses (eq 3).5,6 In contrast, the titanium-initiated acetylene 
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Figure 1. 13C NMR nutation spectra of poly(phenylacetylene) at 77 K. 
(a) Sample prepared according to eq 1. The cross-polarization time was 
0.5 ms and the recycle time 1 s. The number of scans was 144000. (b) 
Sample prepared according to eq 2. The cross-polarization time was 1.0 
ms and the recycle time 0.5 s. The number of scans was 115 200. The 
dotted curves are simulated spectra, calculated as described in the text. 
The center peaks, due to isolated 13C nuclei, have been cropped for 
clarity. The inner and outer pairs of dashed lines mark, respectively, the 
peaks of curves arising from 13Cs separated by single and double bonds. 

polymerizations—both the one reported here and one reported 
earlier, in which titanium tetrabutoxide plus triethylaluminum 
polymerized unsubstituted acetylene7—seem to follow an insertion 
mechanism like that believed to apply to the titanium-catalyzed 
polymerization of ethylene.8 

Whether the labeled carbons are separated in the polymers by 
single or by double bonds was analyzed by nutation NMR 
spectroscopy.7,9 Thus the spectra displayed in Figure 1 exhibit 
Pake doublets, produced by the dipole-dipole interaction of ad­
jacent 13C nuclei, that are coincidence, by 2196 Hz in a sample 
prepared with the titanium catalyst and by 1765 Hz in one pre­
pared with the molybdenum catalyst. The best theoretical sim­
ulations, also displayed in the figure, correspond in the first sample 
to 91% of the carbons being separated by 1.36 A and 9% by 1.48 
A. In the second sample (made with the molybdenum catalyst), 
the analysis is optimized if 88% of the carbons are separated by 
1.48 A and 12% by 1.36 A. The only parameters in the theoretical 
simulations are the two bond lengths, the fraction of the bonds 
having these lengths, and a natural width (75 Hz) for lines as­
sumed to be Lorentzian.9 The accuracy of the nutation method 
and fitting procedure is demonstrated by the measured C-C length 
for acetic acid agreeing with X-ray diffraction measurements 
within 0.7%,9 by the O ^ C length in phenylacetylene agreeing with 
microwave measurements within 1.8%,'° and by the single- and 
double-bond lengths analyzed above agreeing with those (averaging 
1.47 ± 0.01 and 1.35 ± 0.01 A) determined for a variety of 
polyenes." 

(5) (a) Masuda, T.; Sasaki, N.; Higashimura, T. Macromolecules 1975, 
8, 111. (b) Masuda, T.; Higashimura, T. Ace. Chem. Res. 1984, 17, 51. 

(6) (a) Katz, T. J.; Lee, S. J. J. Am. Chem. Soc. 1980,102, 422. (b) Katz, 
T. J.; Lee, S. J.; Nair, M.; Savage, E. B. J. Am. Chem. Soc. 1980,102, 7940. 
(c) Katz, T. J.; Savage, E. B.; Lee, S. J.; Nair, M. / . Am. Chem. Soc. 1980, 
102, 7942. (d) Katz, T. J.; Han, C-C. Organometallics 1982, 1, 1093. 

(7) (a) Clarke, T. C; Yannoni, C. S.; Katz, T. J. J. Am. Chem. Soc. 1983, 
105, 7787. (b) Yannoni, C. S.; Clarke, T. C. Phys. Rev. Lett. 1983, 51, 1191. 

(8) Soto, J.; Steigerwald, M. L.; Grubbs, R. H. J. Am. Chem. Soc. 1982, 
104, 4479. 

(9) (a) Yannoni, C. S.; Kendrick, R. D. J. Chem. Phys. 1981, 74, 747. (b) 
Home, D.; Kendrick, R. D.; Yannoni, C. S. J. Magn. Reson. 1983, 52, 299. 

(10) The nutation NMR measurement, 1.23 A, was made using a sample 
from which the polymers were prepared. The reported value (microwave 
measurements at room temperature) is 1.208 A (Cox, A. P.; Ewart, I. C ; 
Stigliani, W. M. J. Chem. Soc, Faraday Trans 2 1975, 71, 504). 

0002-7863/85/1507-2182S01.50/0 © 1985 American Chemical Society 

_2d.io.i4.is


J. Am. Chem. Soc. 1985, 107, 2183-2185 2183 

The nutation experiments were carried out as described pre­
viously.7,9 The 13C magnetization (at 15 MHz) was generated 
by an 1H-13C cross-polarization sequence using a 40-kHz 
Hartmann-Hahn match,12 and proton broadening was then re­
moved during data acquisition by a strong (2.5 mT) 60-MHz 
decoupling field. The nutation excitation sequence was the same 
for both samples: an 8-/us carbon transmitter pulse (3.6-mT 
rotating component), followed by a 9.9-jus delay and a 1-ixs receiver 
window. The carbon carrier frequency was kept close to the center 
of the spectrum in the laboratory frame. The temperature of the 
samples was 77 K. 

The phenylacetylene (93% 13C0, 4% 13C2)13 was polymerized 
by combining it in toluene either at -20 0C for 3 h with MoCl5 

plus (C6H5)4Sn (1/100 equiv of each, previously incubated for 
10 min at room temperature)1415 or at 0 0C for 4.5 h with titanium 
tetrabutoxide and triethylaluminum (1/50 and 4/50 equiv, pre­
viously incubated for 20 min at room temperature).16 The 
polymers were purified by repeatedly dissolving them in cold 
chloroform and precipitating them with methanol, and they were 
then dried at -35 0C for 12 h. The yields were 28% and 4%, 
respectively, and the 1H NMR spectra were characteristic of 97% 
and 75% "cis" (E) materials.17'18 

For the experiments to succeed with the catalysts containing 
molybdenum pentachloride, the poly(phenylacetylene) samples 
had to be prepared, purified, and maintained below 0 0C. When 
they were prepared at room temperature, the spectra exhibited 
prominent peaks characteristic of 13Cs separated both by single 
and by double bonds, implying that the positions of the double 
bonds, which remain fixed in the cold samples, move on warm-
mg.7b,i7,i9 W h e n W C j 6 w a s substituted for MoCl5,

14 it was 
impossible, even with samples prepared at -20 0C,20 to distinguish 
whether eq 1 or 2 applied, for the intensities of the two kinds of 
peaks were similar. 

When the Casey metal-carbene [pentacarbonyl(diphenyl-
methylene)tungsten]6a'21 or the Fischer metal-carbyne [trans-
bromotetracarbonyl(phenylmethylidyne)tungsten]18,22 was used 
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as the initiator, the experiments did distinguish the alternatives, 
but the results were unexpected and are at present unexplained. 
The composition of the polymers was essentially the same as when 
the titanium-containing mixture was the initiator.23 

However, that the titanium- and molybdenum-initiated reactions 
seemingly follow different paths agrees with the observation that 
compounds of titanium, unlike those of molybdenum, are only 
marginally effective in bringing about olefin metatheses.24 It 
might also account for another distinction, in selectivity, that the 
literature seems to reveal: that titanium-containing initiators are 
more effective than those containing molybdenum in polymerizing 
unsubstituted acetylene,27 whereas the reverse is true for sub­
stituted acetylenes.5b'28 
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Recently much attention has been focused on C-alkylated 
purines.2-8 The reported antitumor activity of these compounds 
and the limited synthetic methodology available to attain them 
prompted us to consider alternate synthetic approaches to this class 
of compounds. This paper reports on the successful development 
of a new synthetically useful method of carbon-carbon bond 
formation in purines through a photochemical SRN1 reaction 
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